Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position.
نویسنده
چکیده
The genome of higher eukaryotes consists of genes having a widely heterogeneous base composition at the third codon position. Ubiquitous variability of the DNA base composition has the following two aspects: intragenomic heterogeneity of the G+C content and the amino-acid-specific translation-coupled biases from the Parity Rule 2 (PR2). PR2 is an intrastrand rule where A = T and G = C are expected if there is no bias in mutation and selection between the two complementary strands of DNA. To examine whether or not the biases from PR2 are responsible for the wide heterogeneity of the DNA G+C content in human, the third codon position of 846 human genes was analyzed. Genes were separated into six groups according to their G+C content of the third codon position, and each group was examined for the translation-coupled PR2 biases in the nucleotide composition of the third codon position for two- and four-codon amino acids. The results show that genes in the different G+C content groups have similar PR2 biases, indicating that the intragenomic heterogeneity of the G+C content is not correlated with translation-coupled biases from the PR2. Therefore, the heterogeneity of the G+C content is likely to be determined by some other mechanism (e.g. locally variable directional mutation pressures) than amino-acid-specific selections for the codon preference.
منابع مشابه
DNA G+C content of the third codon position and codon usage biases of human genes.
The human genome, as in other eukaryotes, has a wide heterogeneity in the DNA base composition. The evolutionary basis for this heterogeneity has been unknown. A previous study of the human genome (846 genes analyzed) has shown that, in the major range of the G+C content in the third codon position (0.25-0.75), biases from the Parity Rule 2 (PR2) among the synonymous codons of the four-codon am...
متن کاملIdentification of a Rare Synonymous Beta Globin Mutation, HBB:c.180G>A codon 59 (G>A) in an Iranian Patient
Beta thalassemia is the most common autosomal recessive disorder. The present study reports a rare β globin gene mutation, HBB: c.180G>A: codon 59 (AAG/AAA), in a patient from Gilan province, northern Iran. Nucleotide sequencing of amplified DNA belonging to a 35 years old man presenting mild hypochromia revealed a synonymous mutation due to a G>A conversion at the third position of codon 59 o...
متن کاملNonsense-mediated mRNA decay among coagulation factor genes
Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...
متن کاملCytokines Genes Polymorphisms in Iranian Patients with Pulmonary Tuberculosis
Background: Pulmonary tuberculosis (PTB) has recently become a major problem in developed countries especially in immune compromised HIV infected individuals. Cytokines, their genes and receptors have been implicated in the protective immunity, pathophysiology and development of tuberculosis. Material & Methods: In the present study the genotype frequencies of a number of polymorphic genes co...
متن کاملComparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 238 1 شماره
صفحات -
تاریخ انتشار 1999